Zirconium Dodecarborides $\mathbf{Z r B}_{12}$. Confirmation of the \mathbf{B}_{12} Cubooctahedral Unit

COLIN H. L. KENNARD
Department of Chemistry, University of Queensland, St. Lucia, Q. 4067, Australia
and LINDSAY DAVIS
Australian Institute for Nuclear Science and Technology, Private Mail Bag, P.O. Sutherland, N.S.W. Australia

Received August 5, 1982

Using powder neutron diffraction and Rietveld's method of profile refinement, the structure of ZrB_{12} was confirmed.

On the basis of steric considerations, Bertaut and Blum (I) proposed that the B_{12} unit in UB_{12} was in a cubeoctahedron. Post and Glaser (2) found that the X-ray powder pattern of ZrB_{12} was isomorphous with UB_{12}. Matkovich et al. (3) prepared a single Fm3m crystal of YB_{12} and observed 37 reflections ($\mathrm{CuK} \alpha \mathrm{X}$ radiation, no absorption correction applied). Using phase angles from the yttrium atoms, a subsequent electron density synthesis confirmed the cubooctahedral arrangement of boron atoms. Least-squares refinement lowered the R to $0.05(7) ; 0.061$ [isotropic temperature factors, $\mathrm{Y}=0.56(7) ; \mathrm{B}=1.4(3) \AA^{2} \mathrm{~J}$.
A survey of $M \mathrm{~B}_{12}$ compounds by Matkovich et al. (4) indicated (i) a cubeoctahedron for B_{12}, where M was a large atomic number element (space group $F m 3 m$), and (ii) an icosahedron, where M was a low-atomic number element (space group $R \overline{3} m$).
These two lattices are related, with the body diagonal of the face-centered cube the
equivalent of the c axis of the hexagonal cell. In both cases the M atom (at the faces of the cube or at the corners of the rhombohedral cell) are in equivalent positions. The difference depends on the B_{12} unit at the center of both unit cells (Fig. 1). Table I shows the relationship for powder patterns between the two cells for the same d spacings.
ZrB_{12} (Z-1032, lot number 2041, from Cerac/Pure Inc, Menomonie Falls, Wisc.; 200 mesh, 99% pure, $\mathrm{Zr}, 40.80$; B, 58.21 ; C, $0.36 ; \mathrm{Fe}, 0.22 ; \mathrm{H}, 0.002$; N, $0.12, \mathrm{O}, 0.14 \%$, X-ray pattern, 3655 matches ZrB_{12} PDS 6 590 , with a trace of ZrB_{12} present) in a cadmium boat (internal dimensions, 100 mm high, 60 mm wide, 3 mm deep) was covered by aluminium foil and cemented with Araldite.
In $F m 3 m$, one atom at a point symmetry $m m$ will generate about $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$, etc., a cubeoctahedron, while for $R \overline{3} m$, two atoms at point symmetry m will generate about $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$, etc., an icosahedron. Using

TABLE I
Relationship between Two Cells

$F m 3 m$ cell				$\stackrel{d}{\dot{\AA})}$	$R \overline{3} m$ cell			
h	k	l	Multiplicity		h	k	l	Multiplicity
-1	-1	1	8	4.28	0	0	3	2
					-1	1	1	6
-2	0	0	6	3.70	-1	1	-2	6
-2	-2	0	12	2.62	-1	1	4	6
-3	-1	1	24	2.23	-1	1	-5	6
					-2	1	3	12
					-2	2	-1	6
-2	-2	-2	8	2.14	0	0	6	2
					-2	2	2	6
-4	0	0	6	1.85	-2	2	-4	6
-3	-3	-1	24	1.70	-1	1	7	6
					-2	2	5	6
					-3	2	1	12
-4	-2	0	24	1.66	-2	1	6	12
					-3	2	-2	12
-4	-2	2	24	1.51	-1	1	-8	6
					-3	2	4	12
					-3	3	0	6
-5	-1	1	24	1.43	0	0	9	2
					-2	2	-7	12
					-3	3	-3	6
					-3	3	3	6
-4	-4	0	12	1.31	-2	2	8	6
					-4	2	0	6
-5	-3	-1	48	1.25	-2	1	-9	12
					-3	2	7	12
					-4	2	-3	12
					-4	3	-1	12
-6	0	0	6	1.23	-1	1	10	6
					-3	3	6	6
-4	-4	-2	24		-3	3	-6	6
					-4	3	2	12
-6	-2	0	24	1.17	-3	2	-8	12
					-4	3	-4	12
-5	-3	-3	24	1.13	-1	1	-11	6
					-4	3	5	12
					-4	4	1	6
-6	-2	-2	24	1.12	-2	2	-10	6
					-4	2	6	12
					-4	4	-2	6
-4	-4	-4	8	1.07	0	0	-12	2
					-4	4	4	6
$\begin{aligned} & -5 \\ & -7 \end{aligned}$	-5	1	24	1.04	-2	2	11	6
	-1	-1	24		-3	3	9	6
					-3	3	-9	6
					-4	3	-7	12
					-4	4	-5	6
					-5	3	1	12
-6	-4	0	24	1.03	-3	2	10	12
					-5	3	-2	12

neutron powder diffraction, the difference will depend on multiplicity and structure factor calculations (see Fig. 2 and Table II).

The highly absorbing sample was put in the reflecting position in the stationary

Fig. 1. Relationship between $F m 3 m$ and $R \overline{3} m . M$ is either at the corners of a face-centered table (solid line) or a rhombohedron (dashed line).
powder mode on a neutron diffractometer ($\lambda=1.086 \AA$) attached to hole 4 H 1 on the Australian Atomic Energy Commission's HIFAR (DIDO type) $10-\mathrm{MW}$ reactor. A blank without ZrB_{12} gave only aluminium lines (A1, Fm3m, $a=4.050 \AA$) and no cadmium ones (Cd, P63/mmc, $a=2.979, c=$ $5.618 \AA$).
The data were refined (5) to give in the cubic case $R=0.028,[0.047] ; n, 16,[22] ; a$,

TABLE II
Powder Data Based on Cubic Cell

h	k	l	Half-width	2θ	$I_{\text {calc }}$	$I_{\text {obs }}$
1	1	1		14.628	2,380	2,384
0	0	2	0.473	16.906	519	531
0	2	2	0.462	23.998	2,477	2,634
1	1	3	0.492	28.219	16,068	15,568
2	2	2	0.506	29.501	6,707	7,225
0	0	4	0.575	34.196	626	569
1	3	3	0.635	37.372	519	523
0	2	4	0.655	38.381	1,761	1,496
2	2	4	0.740	42.210	7,531	7,670
3	3	3	0.805	44.906	16,302	16,460
1	1	5	0.805	44.906	1,974	1,993
0	4	4	0.916	49.137	431	458
1	3	5	0.983	51.550	11,478	11,274
2	4	4	1.005	52.336	3,723	3,789
0	0	6	1.005	52.336	13,363	13,599
0	2	6	1.095	55.402	94	100
Derived Bragg R factor					$=2.75$	

Fig. 2. $I_{\text {calc }}$ (above) and $\left|I_{\text {obs }}\right|-\left|I_{\text {calc }}\right|$ (below) neutron diffraction spectrum for $\mathrm{ZrB}_{12}(*) \mathrm{Al}$ powder lines; 111, 200, 220, 311, respectively.
7.388(3), [7.408(2)] Å, $\mathrm{Zr} \mathrm{B}, \quad 1.6(3)$, Glaser X-ray powder data (2) refined by $[-0.04(10)] \AA^{2} ; \mathrm{B} y, 0.1710(6),[0.1699(18)] \quad$ Matkovich et al. (4). The model for the hex$\AA ; B B,-0.075(5),[0.53(62)] \AA^{2}$, with the square brackets referring to the Post and agonal case, as calculated in the Appendix, did not refine ($R=0.112$).

Appendix

Calculation of B Parameters

$V_{0}-V_{1}=l$
(side of icosahedron),
$V_{0}-V_{2}=1.6181$,
$V_{0}-V_{3}=1.902 l, \quad$ (diagonal)
Hexagonal cell, $a=5.238 \AA$.

$$
\begin{aligned}
x_{1}=\frac{l}{3 a} & =\frac{l}{3 \times 5.238} & x_{2} & =\frac{1.618 l}{3 \times 5.238} \\
& =0.0636 l ; & & =0.1030 l
\end{aligned}
$$

$x, 2 x, z ;-x,-2 x,-z$
(inversion)

$$
\begin{aligned}
(1.902 l)^{2} & =(x+x)^{2}+(2 x+2 x)^{2} a^{2}+(z+z) c^{2}+2 a^{2}(x+x)(2 x+2 x) \cos (\gamma) \\
& =4 x^{2} a^{2}+16 x^{2} a^{2}+4 z^{2} c^{2}-8 x^{2} a^{2} \\
& =12 x^{2} a^{2}+4 z^{2} c^{2} \\
z^{2} & =\frac{(1.902 l)^{2}-12 x^{2} a^{2}}{4 c^{2}} ; \quad c=12.831 \AA
\end{aligned}
$$

$$
\text { if } \begin{aligned}
l & =1.8 & \\
x_{1} & =0.1145 & x_{2}=0.1854 \\
z_{1} & =0.1060 & z_{2}=-0.0248
\end{aligned}
$$

References

1. F. Bertaut and P. Blum, C. R. Acad. Sci. Paris 229, 666-667 (1949).
2. B. Post and F. W. Glaser, J. Metals 4, 631-632 (1952).
3. V. I. Matkovich, J. Economy, R. F. Giese, and
R. Barrett, Acta Crystallogr. 19, 1056-1057 (1965).
4. V. I. Matkovich, R. F. Giese, and J. Economy, Z. Krist. 122, 116-130 (1965).
5. A. W. Hewat, AERE Report R 7350, Modified Rietveld Program (1975).
